35 research outputs found

    Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits

    Full text link
    Spin correlations in an interacting electron liquid are studied in the high-frequency limit and in both two and three dimensions. The third-moment sum rule is evaluated and used to derive exact limiting forms (at both long- and short-wavelengths) for the spin-antisymmetric local-field factor, limωG(q,ω)\lim_{\omega \to \infty}G_-({\bf q, \omega}). In two dimensions limωG(q,ω)\lim_{\omega \to \infty}G_-({\bf q, \omega}) is found to diverge as 1/q1/q at long wavelengths, and the spin-antisymmetric exchange-correlation kernel of time-dependent spin density functional theory diverges as 1/q21/q^2 in both two and three dimensions. These signal a failure of the local-density approximation, one that can be redressed by alternative approaches.Comment: 5 page

    Singular Structure and Enhanced Friedel Oscillations in the Two-Dimensional Electron Gas

    Full text link
    We calculate the leading order corrections (in rsr_s) to the static polarization Π(q,0,)\Pi^{*}(q,0,), with dynamically screened interactions, for the two-dimensional electron gas. The corresponding diagrams all exhibit singular logarithmic behavior in their derivatives at q=2kFq=2 k_F and provide significant enhancement to the proper polarization particularly at low densities. At a density of rs=3r_s=3, the contribution from the leading order {\em fluctuational} diagrams exceeds both the zeroth order (Lindhard) response and the self-energy and exchange contributions. We comment on the importance of these diagrams in two-dimensions and make comparisons to an equivalent three-dimensional electron gas; we also consider the impact these finding have on Π(q,0)\Pi^{*}(q,0) computed to all orders in perturbation theory

    Valence band photoemission from the GaN(0001) surface

    Full text link
    A detailed investigation by one-step photoemission calculations of the GaN(0001)-(1x1) surface in comparison with recent experiments is presented in order to clarify its structural properties and electronic structure. The discussion of normal and off-normal spectra reveals through the identified surface states clear fingerprints for the applicability of a surface model proposed by Smith et al. Especially the predicted metallic bonds are confirmed. In the context of direct transitions the calculated spectra allow to determine the valence band width and to argue in favor of one of two theoretical bulk band structures. Furthermore a commonly used experimental method to fix the valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR

    Two-Stage Rotational Disordering of a Molecular Crystal Surface: C60

    Get PDF
    We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60_{60} fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low temperature ordered (2×2)(2 \times 2) state, and a high temperature (1×1)(1 \times 1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces.Comment: 4 pages, 2 figure

    Unified Treatment of Asymptotic van der Waals Forces

    Full text link
    In a framework for long-range density-functional theory we present a unified full-field treatment of the asymptotic van der Waals interaction for atoms, molecules, surfaces, and other objects. The only input needed consists of the electron densities of the interacting fragments and the static polarizability or the static image plane, which can be easily evaluated in a ground-state density-functional calculation for each fragment. Results for separated atoms, molecules, and for atoms/molecules outside surfaces are in agreement with those of other, more elaborate, calculations.Comment: 6 pages, 5 figure

    Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes

    Get PDF
    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces

    Low-Energy Linear Structures in Dense Oxygen: Implications for the ϵ\epsilon-phase

    Full text link
    Using density functional theory implemented within the generalized gradient approximation, a new non-magnetic insulating ground state of solid oxygen is proposed and found to be energetically favored at pressures corresponding to the ϵ\epsilon-phase. The newly-predicted ground state is composed of linear herringbone-type chains of O2_2 molecules and has {\it Cmcm} symmetry (with an alternative monoclinic cell). Importantly, this phase supports IR-active zone-center phonons, and their computed frequencies are found to be in broad agreement with recent infrared absorption experiments.Comment: 4 pages, 4 figure

    Linear-response theory of Coulomb drag in coupled electron systems

    Get PDF
    We report a fully microscopic theory for transconductivity, or, equivalently, momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear response formalism, and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Aslamazov-Larkin diagrams known for superconductivity. Previously reported results are shown to be special cases of our general expression; specifically, for constant impurity scattering rates, we recover the Boltzmann equation results in the semiclassical clean limit, and the memory function results in dirty systems. Furthermore, we show that for energy dependent relaxation times, the final result is not expressible in terms of standard density-response functions. Other new results include: (i) at T = 0, the frequency dependence of the transfer rate is found to be proportional to Ω and Ω2 for frequencies below and above the impurity 1 scattering rate, respectively and (ii) the weak localization correction to the transconductivity is given by δσ W
    corecore